Generalized analogs of the Heisenberg uncertainty inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heisenberg Uncertainty Inequality for Gabor Transform

We discuss the Heisenberg uncertainty inequality for groups of the form K Rn , K is a separable unimodular locally compact group of type I. This inequality is also proved for Gabor transform for several classes of groups of the form K Rn . Mathematics subject classification (2010): Primary 43A32; Secondary 43A30, 22D10, 22D30, 22E25.

متن کامل

On the Heisenberg-weyl Inequality

In 1927, W. Heisenberg demonstrated the impossibility of specifying simultaneously the position and the momentum of an electron within an atom.The well-known second moment Heisenberg-Weyl inequality states: Assume that f : R → C is a complex valued function of a random real variable x such that f ∈ L(R). Then the product of the second moment of the random real x for |f | and the second moment o...

متن کامل

A Stochastic Heisenberg Inequality

An analogue of the Fourier transform will be introduced for all square integrable continuous martingale processes whose quadratic variation is deterministic. Using this transform we will formulate and prove a stochastic Heisenberg inequality.

متن کامل

On the Heisenberg-pauli-weyl Inequality

In 1927, W. Heisenberg demonstrated the impossibility of specifying simultaneously the position and the momentum of an electron within an atom.The following result named, Heisenberg inequality, is not actually due to Heisenberg. In 1928, according to H. Weyl this result is due to W. Pauli.The said inequality states, as follows: Assume thatf : R → C is a complex valued function of a random real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2015

ISSN: 1029-242X

DOI: 10.1186/s13660-015-0691-7